domingo, 27 de junio de 2010

Puente H con MOSFET para motores CC

En la actualidad, para operar motores de CC permitiendo un funcionamiento de giro en ambos sentidos se utilizan, en la mayoría de los casos, circuitos con transistores MOSFET en lugar de las llaves genéricas SW1 a SW4 mencionadas con anterioridad. Algunos diseñadores prefieren utilizar transistores de canal P para los lados superiores y de canal N para los inferiores. La ventaja de este concepto de diseño es que las tensiones necesarias para activar los Gates de los transistores de canal P se podrán sacar directamente de la alimentación utilizada para el motor. Si por el contrario utilizamos transistores de Canal N en el lado superior de la H, la tensión necesaria para activar los Gates deberá provenir de un elevador de tensión que funcione por encima del valor nominal de alimentación del motor. Observemos la siguiente imagen para comprender este concepto:
Los interruptores reemplazados por transistores MOSFET dentro del puente H y la circulación de corriente para lograr los dos sentidos de giro.Para obtener un sentido de giro determinado (cualquiera), tal como habíamos analizado en los ejemplos iniciales, los transistores MOSFET IRFZ44N mostrados en imagen deberán comportarse como verdaderas llaves conmutadoras. Tal como se desprende de la hoja de datos del transistor empleado, para que este tipo de transistor MOSFET de canal N conduzca a pleno, ofreciendo la menor resistencia entre Drain y Source, la tensión de Gate respecto a Source deberá ser más positiva y el orden de los 2 a 4 Volts. Si asumimos que el transistor Q1 (en un sentido de giro) y Q3 (en el otro sentido de giro) ofrecen la mínima resistencia, el potencial de 12 Volts que alimenta los Drains respectivos pasará (según el giro seleccionado) hacia el motor, tal como muestra la figura superior.
Pero volviendo sobre la teoría, para que en el Source existan los 12Volts, en el Gate debemos aplicar una tensión entre los 14 y los 16 Volts, es decir, 2 a 4 Volts por sobre el Source. De lo contrario, la tensión necesaria para activar el transistor a la máxima conducción se descontará de la tensión de alimentación y al motor le llegarán 10 Volts o menos. De este modo, tendremos una máxima circulación de corriente a través de Drain – Source para hacer girar el motor al máximo, con una diferencia de potencial de 2 Volts o más entre estos dos terminales del transistor. Esto equivale, según la fórmula de potencia, que 2 Volts multiplicados por la máxima corriente del motor será una potencia que disipará en forma de calor en el transistor. Cuanto mayor sea la corriente para hacer funcionar el motor, mayor será el calor generado por los transistores, ergo, mayor será el tamaño de los disipadores. Esto, por supuesto, hablará muy mal del diseñador del circuito quien nunca comprenderá por qué calientan tanto los transistores de las ramas superiores.

Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina

No hay comentarios:

Publicar un comentario